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ABSTRACT 
 
Meaning is a fundamental component of nearly all aspects of human cognition, but formal 

models of semantic memory have classically lagged behind many other areas of cognition. 

However, computational models of semantic memory have seen a surge progress in the last two 

decades, advancing our knowledge of how meaning is constructed from experience, how 

knowledge is represented and used, and what processes are likely to be culprit in disorders 

characterized by semantic impairment. This chapter provides an overview of several recent 

clusters of models and trends in the literature, including modern connectionist and distributional 

models of semantic memory, and contemporary advances in grounding semantic models with 

perceptual information and models of compositional semantics. Several common lessons have 

emerged from both the connectionist and distributional literatures, and we attempt to synthesize 

these themes to better focus future developments in semantic modeling.  
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1.	
  INTRODUCTION	
  
	
  

Meaning is simultaneously the most obvious feature of memory—we can all compute it 

rapidly and automatically—and the most mysterious aspect to study. In comparison to many 

areas of cognition, relatively little is known about how humans compute meaning from 

experience. Nonetheless, a mechanistic account of semantics is an essential component of all 

major theories of language comprehension, reading, memory, and categorization. Semantic 

memory is necessary for us to construct meaning from otherwise meaningless words and 

utterances, to recognize objects, and to interact with the world in a knowledge-based manner. 

Semantic memory typically refers to memory for word meanings, facts, concepts, and 

general world knowledge. For example, you know that a panther is a jungle cat, is more like a 

tiger than a corgi, and you know better than to try to pet one.  The two common types of 

semantic information are conceptual and propositional knowledge. A concept is a mental 

representation of something, such as a panther, and knowledge of its similarity to other concepts. 

A proposition is a mental representation of conceptual relations that may be evaluated to have a 

truth value, for example, that a panther is a jungle cat, or has four legs and knowledge that 

panthers do not have gills. 

In Tulving’s (1972) classic modular taxonomy, declarative memory was subdivided into 

episodic and semantic memory, the former containing memory for autobiographical events, and 

the latter dedicated to generalized memory not linked to a specific event. While you may have a 

specific autobiographical memory of the last time you saw a panther at the zoo, you do not have 

a specific memory of when you learned that a panther was a jungle cat, was black, or how it is 

similar to a tiger. In this sense, semantic memory gained a reputation as the more miscellaneous 

and mysterious of the memory systems. While episodic memory could be studied with 

experimental tasks such as list learning and could be measured quantitatively by counting the 
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number of items correctly recognized or recalled, semantic memory researchers focused more on 

tasks such as similarity judgments, proposition verification, semantic priming, and free 

association. Unlike episodic memory, there existed no mechanistic account of how semantic 

memory was constructed as a function of experience. However, the field has advanced a 

considerable amount in the past 25 years.  

A scan of the contemporary literature reveals a large number of formal models that aim to 

understand the mechanisms that humans use to construct semantic memory from repeated 

episodic experience. Modern semantic models have made truly impressive progress at 

elucidating how humans learn and represent semantic information, how semantic memory is 

recruited and used in cognitive processing, and even how complex functions like semantic 

composition may be accomplished by relatively simple cognitive mechanisms. Many of the 

current advances build from classic ideas, but only relatively recently has computational 

hardware advanced to a scale where we can actually simulate and evaluate these systems. 

Advances in semantic modeling also owe to excellent interdisciplinary collaboration, building in 

part on developments in computational linguistics, machine learning, and information retrieval.  

The goal of this chapter is to provide an overview of recent advances in models of 

semantic memory. We will first provide a brief synopsis of classic models and themes in 

semantic memory research, but will then focus on computational developments. In addition, the 

focus of the chapter is on models that have a formal instantiation that may be tested 

quantitatively. Hence, while there are several exciting new developments in verbal conceptual 

theory (e.g., Louwerse’s (2011) Symbol Interdependency Hypothesis), we focus exclusively on 

models that are explicitly expressed by computer code or mathematical expressions. In addition, 

the chapter assumes a sufficient understanding of the empirical literature on semantic memory. 
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For an overview of contemporary experimental findings, we refer the reader to a companion 

chapter on Semantic Memory by McRae and Jones (2013).    

There are several potential ways to organize a review of the literature, and no single 

structure will satisfy all theorists. We opt here to follow two major clusters of cognitive models 

that have been prominent: distributional models and connectionist models. The division may also 

be broadly thought of as a division between models that specify how concepts are learned from 

statistical experience (distributional models), and models that specify how propositions are 

learned or that use conceptual representations in cognitive processes (connectionist models). 

Obviously, there are exceptions in both clusters that cross over, but the two literatures have had 

different foci. Next, we summarize some classic models of semantic memory and common 

theoretical debates that have extended to the contemporary models. Following the historical 

trends in the literature, we then discuss advances in connectionist models, followed by 

distributional models. Finally, we discuss hybrid approaches, new directions in models of 

grounded semantics and compositional semantics, and attempt to synthesize common lessons 

that have been learned across the literature.	
  

2.	
  CLASSIC	
  MODELS	
  AND	
  THEMES	
  IN	
  SEMANTIC	
  MEMORY	
  RESEARCH	
  
	
  

The three classic models of semantic memory most commonly discussed are semantic 

networks, feature-list models, and spatial models. These three models deserve mention here, both 

because they have each seen considerable attention in the literature, and because features of each 

have clearly evolved into modern computational models.  

The semantic network has traditionally been one of the most common theoretical 

frameworks used to understand the structure of semantic memory. Collins and Quillian (1969) 

original proposed a hierarchical model of semantic memory in which concepts were nodes and 

propositions were labeled links (e.g., the nodes for dog and animal were connected via an ‘isa’ 
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link). The superordinate and subordinate structure of the links produced a hierarchical tree 

structure (animals were divided into birds, fish, etc., and birds were further divided into robin, 

sparrow, etc.), and allowed the model to explain both conceptual and propositional knowledge 

within a single framework. Accessing knowledge required traversal of the tree to the critical 

branch, and the model was successful in this manner of explaining early sentence verification 

data from humans (e.g., the speed to verify that “a canary can sing”). A later version of the 

semantic network model proposed by Collins and Loftus (1975) deemphasized the hierarchical 

nature of the network in favor of the process of spreading activation through all network links 

simultaneously to account for semantic priming phenomena—in particular, the ability to produce 

fast negative responses. Early semantic networks can be seen as clear predecessors to several 

modern connectionist models, and features of them can also be seen in modern probabilistic and 

graphical models as well.  

A competing model was the feature-comparison model of Rips, Shoben, and Smith 

(1973). In this model, a word’s meaning is encoded as a list of binary descriptive features, which 

were heavily tied to the word’s perceptual referent. For example, the <has_wings> feature would 

be turned on for a robin, but off for a beagle. Smith, Shoben, and Rips (1974) proposed two 

types of semantic features: Defining features that all concepts have, and characteristic features 

that are typical of the concept, but are not present in all cases; for example, all birds have wings, 

but not all birds fly. Processing in the model was accomplished by computing the feature overlap 

between any two concepts, and the features were allowed to vary in their contribution of 

importance to the concept, although how particular features came to be and how they were 

ranked was not fully specified. Modern versions of feature-list models use aggregate data 

collected from human raters in property generation tasks (e.g., McRae, de Sa, & Seidenberg, 

1997).  



Semantic	
  Memory	
   7	
  

A third type was the spatial model, which emerged from Osgood’s (1952, 1971) early 

attempts to empirically derive semantic features using semantic differential ratings. Osgood had 

humans rate words on a Likert scale against a set of polar opposites (e.g., rough-smooth, heavy-

light), and a word’s meaning was then computed as a coordinate in a multidimensional semantic 

space. Distance between words in the space was proposed as a process for semantic comparison.1 

Featural and spatial representations have been contrasted as models of human similarity 

judgments (e.g., Tversky & Gati, 1982), and the same contrast applies to spatial vs. featural 

representations of semantic representations. We will see the feature vs. space debate emerge 

again with modern distributional models. Early spatial models can be seen as predecessors of 

modern semantic space models of distributional semantics (but co-occurrences in text corpora 

are used as the data on which the space is constructed rather than human ratings).   

One issue with all three of these classic models is that none ever did actually learn 

anything. Each model relied on representations that were hand coded based on the theorist’s 

intuition (or subjective ratings) of semantic structure, but none formally specified the cognitive 

mechanisms by which the representations were constructed. As Hummel and Holyoak (2003) 

have noted, this type of intuitive modeling may have serious consequences: “The problem of 

hand-coded representations is the most serious problem facing computational modeling as a 

scientific enterprise. All models are sensitive to their representation, so the choice of 

representation is among the most powerful wildcards at the modeler’s disposal” (p. 247). As we 

will see later in the chapter, this is exactly the concern that modern distributional models address.  

3. CONNECTIONIST MODELS OF SEMANTIC MEMORY 
	
  

Connectionist models were among the first to specify how semantic representations might 

come to be learned, and how those representations might interact with other cognitive processes. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  One interpretation of feature comparison given by Rips et al., 1974 was also spatial distance.	
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Modern connectionism is a framework used to model mental and behavioral phenomena as an 

emergent process—one that arises out the behavior of networks of simple interconnected units 

(Rumelhart & McClelland, 1986). Connectionism is a very broad enterprise. Connectionist 

models can be used to explicitly model the interaction of different brain regions or neural 

processes (O’Reilly et al., 2012) or they can be used to model cognition and behavior from a 

“neurally-inspired” perspective, which values the way in which the models exhibit parallel 

processing, interactivity, and emergentism (Rumelhart & McClelland, 1986; Rogers & 

McClelland, 2006, 2008). Connectionist models have made a very large contribution to 

simulating and understanding the dynamic nature of semantic knowledge and how semantic 

knowledge interacts with other cognitive processes. 

Connectionist models represent knowledge in terms of weighted connections between 

interconnected units. A model’s set of units, its connections, and how they are organized is called 

the model’s architecture. Research involving connectionist models has studied a wide range of 

architectures, but most connectionist models share a few common features. Most models have at 

least one set of units designated as input units, as well as at least one set of units designated as 

target or output units. Most connectionist models also have one or more sets of intervening units 

between the input and output units, which are often referred to as hidden layers. 

A connectionist model represents knowledge in terms of the strength of the weighted 

connections between units. Activation is fed into the input units, and that activation in turn 

activates (or suppresses) the units to which the input units are connected, as a function of the 

weighted connection strength between the units. Activation eventually propagates to the output 

units, with one important question of interest being, what output units will a connectionist model 

activate given a particular input. In this sense, the knowledge in connectionist models is typically 

thought of as representing the function or relationship between a set of inputs and a set of 
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outputs. Connectionist models should not, however, be confused with models that map simple 

stimulus-response relationships; The hidden layers between input and output layers in 

connectionist networks allow them to learn very complex internal representations. Models with 

an architecture such as the one just described, where activation flows from input units to hidden 

units to output units, are typically referred to as feed-forward networks. 

A key aspect of connectionist models is that they are often used to study the learning process 

itself. Typically, the weights between units in a connectionist network are initialized to a random 

state. The network is then provided with a training phase, in which the model is provided with 

inputs (typically involving some sort of expected input from the environment), and the weights 

are adjusted as a function of the particular inputs the network received. Learning (adjusting the 

weights) is accomplished in either an unsupervised or a supervised fashion. In unsupervised 

learning, weights are typically adjusted according some sort of associative principle, such as 

Hebbian learning (Hebb, 1946; Grossberg, 1976), where weights between units are increased the 

more often the two units are active at the same time. In supervised learning, weights are adjusted 

by observing which output units the network activated given a particular input pattern, and 

comparing that to some goal or target output given those inputs. The weights are then adjusted so 

as to reduce the amount of error the network makes in terms of its activation of the “correct” and 

“incorrect” outputs (Kohonen, 1977; Rosenblatt, 1959; Rumelhart, Hinton, & Williams, 1986; 

Widrow & Hoff, 1960). 

3.1 Rumelhart Networks 

An illustrative example of a connectionist model of semantic memory (shown in Figure 1A) 

was first presented by Rumelhart & Todd (1982) and studied in detail by Rogers and McClelland 

(2006). This network has two sets of input units: (1) a set of units meant to represent words or 

concepts (e.g. robin, canary, sunfish, etc.), and (2) a set of units meant to represent different 
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types of relations (e.g. is-a, can, has, etc.). The network learns to associate conjunctions of those 

inputs (e.g. robin+can) with outputs representing semantic features (e.g. fly, move, sing, grow, 

for robin+can). The model accomplishes this using supervised learning, having robin+can 

activated as inputs, observing what a randomly initialized version of the model produces as an 

output, and then adjusting the weights so as to make the activation of the correct outputs more 

likely. The model is not merely learning associations between inputs and outputs—in the 

Rumelhart network, the inputs and outputs are mediated by two sets of hidden units, which allow 

the network to learn complex internal representations for each input. 

A critical property of connectionist architectures using hidden layers is that the same hidden 

units are being used to create internal representations for all possible inputs. In the Rogers et al. 

example, robin, oak, salmon, and daisy all use the same hidden units; what differentiates their 

internal representations is that they instantiate different distributed patterns of activation. But 

because the network is using overlapping distributed representations for all of the concepts, this 

means that during the process of learning, changing the connection weights as a result of learning 

about one input could potentially affect how the network represents all other items. When the 

network learns an internal representation (i.e. hidden unit activation state) for the input 

robin+can, and learns to associate the outputs sing and fly with that internal representation, this 

will mean that other inputs whose internal representations are similar to robin (i.e. have similar 

hidden unit activation states, such as canary) will also become more associated with sing and fly. 

This provides these networks with a natural mechanism for categorization, generalization, and 

property induction. The behavior allows researchers using connectionist models to study how 

these networks categorize, and to compare the predictions of the model to human behaviors. 

Rogers and McClelland (2006) extensively studied the behavior of the Rumelhart networks, 

and found that the model provides an elegant account of a number of aspects of human concept 
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acquisition and representation. For example, they found that as the model acquires concepts 

through increasing amounts of experience, the internal representations for the concepts show 

progressive differentiation, learning broader distinctions first and more fine-grained distinctions 

later, similar to the distinctions children show (Mandler et al., 1991). In the model this happens 

because the network is essentially performing something akin to a principal component analysis, 

learning the different features in the order of the amount of variance in the input that they 

explain. Rogers and McClelland argued that this architecture, which combines simple learning 

principles with the expected structure of the environment, can be used to understand how certain 

features (those that have rich covariational structure) become the features that organize 

categories, and how conceptual structure can become reorganized over the course of concept 

acquisition. The general (and somewhat controversial) conclusion that Rogers and McClelland 

draw from their study of this model is that a number of properties of the semantic system, such 

as the taxonomic structure of categories (Bower et al., 1970) and role of causal knowledge in 

semantic reasoning (Keil, 1989), can be explained as an emergent consequence of simple 

learning mechanisms combined with the expected structure of the environment, and that these 

structural factors do not necessarily need to be explicitly built into models of semantic memory. 

 Feed-forward connectionist models have only been used in a limited fashion to study the 

actual structure of semantic memory. However, these models have been used extensively to 

study how semantic structure interacts with various other cognitive processes. For example, feed-

forward models have been used to simulate and understand the word learning process (Gasser & 

Smith, 1998; Regier, 2005). These word-learning models have been used to show that many 

details about the representation of word meanings (like hierarchical structure), learning 

constraints (such as mutual exclusivity and shape bias), and empirical phenomena (such as the 

vocabulary spurt that children show around two years of age) emerge naturally from the structure 
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of environment with a simple learning algorithm, and do not need to be explicitly built into the 

model. Feed-forward models have also been used to model consequences of brain damage (Farah 

& McClelland, 1991; Rogers et al., 2004; Tyler et al., 2000), Alzheimer’s disease (Chan, 

Salmon, & Butters, 1998), schizophrenia (Braver, Barch, & Cohen, 1998; Cohen and Servan-

Schreiber, 1992; Nestor et al., 1998), and a number of other disorders that involve impairments 

to semantic memory (see Aakerlund & Hemmingsen, 1998, for a review). These models 

typically study brain disorders by lesioning the network (i.e. removing units or connections), or 

otherwise causing the network to behave in suboptimal ways, and then studying the 

consequences of this disruption. Connectionist models provide accounts of a wide range 

impairments and disorders, and have also been used to show that many semantic consequences 

of impairments and disorders, such as the selective impairment of certain categories, can be 

explained in terms of emergent processes deriving from the interaction of low-level features, 

rather than requiring explicit instantiations in the model (such as creating modular memory 

systems for living and nonliving things, see McRae and Cree, 2002, for a review). 

3.2 Dynamic Attractor Networks 

In addition to feedforward models such as the Rumelhart network, a considerable amount of 

semantic memory research has explored the use of dynamical connectionist models (Hopfield, 

1982).  A connectionist model becomes a dynamical model when its architecture involves some 

sort of bi-directionality, feedback, or recurrent connectivity. Dynamical networks allow 

investigations into how the activation of representations may change over time, as well as how 

semantic representations interact with other cognitive processes in an online fashion. 

For example, Figure 2A shows McLeod, Shallice, and Plaut’s (2000) dynamical network for 

pronouncing printed words. The network has a layer of units for encoding orthographic 

representations (grapheme units), a layer of units for encoding phonological representations 
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(phoneme units), and an intervening layer between the two that encodes the words semantic 

features (sememe units) - as well as additional layers of hidden units between each of these 

layers. Critically, the activation in this network is allowed to flow in both directions, from 

phonemes to sememes to graphemes, and from graphemes to sememes to phonemes. The 

network also has recurrent connections (the loops in figure 2A) connecting the grapheme, 

sememe, and phoneme layers to themselves. The combination of the bidirectional connections 

and recurrent connectivity allows the McLeod et al. network to establish a dynamical system 

where the activation at the various levels will feed back and forth eventually settling into a stable 

attractor state. The result is that these attractor networks can allow multiple constraints (e.g. the 

weights that establish the network’s knowledge of the links between orthography and semantics, 

and semantics and phonology) to compete, eventually settling into a state which satisfies the 

most likely constraints for a given input. 

As an illustration of how this works, consider an example using the McLeod et al. network, 

shown in Figure 2B. Here, the network is simulating the experience of a person reading words. 

The figure depicts a three-dimensional space, where the vertical direction (labeled “energy”) 

represents the stability of the network’s current state (versus its likelihood to switch to a new 

state) as activity circulates through the network. In an attractor network, only a small number of 

possible states are stable. These stable states are determined by the network’s knowledge about 

the likelihood of certain orthographic, phonological, and semantic states to co-occur. And given 

any input, the network will eventually settle into one of these stable states. For example, if the 

network receives a clear case of the printed word DOG as input, and this input is not disrupted, 

the network will quickly settle into the corresponding DOG state in its orthographic, 

phonological, and semantic layers. Alternatively, if the network received a nonword like DAG as 

an input, it would eventually settle into a neighboring attractor state (like DOG or DIG or DAD). 
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Similarly, if the network receives DOG as an input, but this input is impoverished (e.g. noisy, 

with errors in the input signal), or disrupted (simulating masking such as might happen in a 

psychology experiment), this can affect the network’s ability to settle into the correct attractor. In 

a manner corresponding well to the disruption effects that people show in behavioral 

experiments, an early disruption (before the network has had a chance to settle into an 

orthographic attractor basin) can lead the network to make a form based error (settling into the 

LOG basin instead). A later disruption – happening after the orthographic layer has settled into 

its basin but before the semantic layer has done so – can lead the network to make a semantic 

error, activating a code of semantic features corresponding to CAT. 

Attractor networks have been used to study a very wide range of semantic-memory related 

phenomena. Rumelhart et al. (1986) used an attractor network to show how schemas (e.g., one’s 

representations for different rooms) can emerge naturally out of the dynamics of co-occurrence 

of lower level objects (e.g., items in the rooms), without needing to build explicit schema 

representations into the model (see also Botvinick & Plaut, 2004). Like the McLeod example 

already described, attractor networks have been extensively used to study how semantic memory 

affects lexical access (Harm & Seidenberg, 2004; McLeod et al., 2000) as well as to model 

semantic priming (Cree, McRae, & McNorgan, 1998; McRae, et al., 1997; Plaut & Booth, 2000). 

Dynamical models have also been used to study the organization and development of the child 

lexicon (Horst, McMurray, & Samuelson, 2006; Li, Xhao, & MacWhinney, 2007), the bilingual 

lexicon (Li, 2009), and children’s causal reasoning using semantic knowledge (McClelland & 

Thompson, 2007), and how lexical development differs in typical and atypical developmental 

circumstances (Thomas & Karmiloff-Smith, 2003).  

 Dynamical connectionist models have also simulated various ways that semantic 

knowledge impacts and interacts with sentence production and comprehension, including how 
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semantic constraints impact the grammaticality of sentences (Allen & Seidenberg, 1999; Dell, 

Chang, & Griffin, 1999; McClelland, St. John, & Taraban, 1989; Tabor & Tanenhaus, 1999; 

Taraban & McClelland, 1988), and how semantic knowledge assists in the learning of linguistic 

structure (Borovsky & Elman, 2006; Chang, Dell, & Bock, 2006; Rohde & Plaut, 2000). As with 

feedforward models, dynamical models have been also used to extensively study many 

developmental and brain disorders such as dyslexia and brain damage (Devlin et al, 1998; Hinton 

& Shallice, 1991; Kinder & Shanks, 2003; Lambon Ralph et al., 2001; Plaut, 1999, 2002). 

4. DISTRIBUTIONAL MODELS OF SEMANTIC MEMORY 
	
  

There are now a large number of computational models in the literature that may be 

classified as distributional. Other terms commonly used to refer to these models are corpus-

based, semantic space, or co-occurrence models, but distributional is the most appropriate term 

common to all the models in that it fairly describes the environmental structure all learning 

mechanisms capitalize on (i.e., not all are truly spatial models, and most do not capitalize merely 

on direct co-occurrences). The various models differ greatly in the cognitive mechanisms they 

posit that humans use to construct semantic representations, ranging from Hebbian learning to 

probabilistic inference. But the unifying theme common to all these models is that they 

hypothesize a formal cognitive mechanism to learn semantics from repeated episodic experience 

in the linguistic environment (typically a text corpus).   

The driving theory behind modern distributional models of semantic representation is 

certainly not a new one, and dates back at least to Wittgenstein (1953). The most famous and 

commonly used phrase to summarize the approach is Firth’s (1957) “you shall know a word by 

the company it keeps,” and this idea was further developed by Harris (1970) into the 

distributional hypothesis of contextual overlap. For example, robin and egg may become related 

because they tend to co-occur frequently with each other. In contrast, Robin and sparrow become 
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related because they are frequently used in similar contexts (with the same set of words), even if 

they rarely co-occur directly. Ostrich may be less related to robin due to a lower overlap of their 

contexts compared to sparrow, and stapler is likely to have very little contextual overlap with 

robin. Formal models of distributional semantics differ in their learning mechanisms, but they all 

have the same overall goal of formalizing the construction of semantic representations from 

statistical redundancies in language.    

A taxonomy of distributional models is very difficult now given the large number of them 

and range of learning mechanisms. The models can be loosely clustered based on their notion of 

context (e.g., documents, words, time, etc.), or the learning mechanism they employ. We opt for 

the latter organization here, and just present some standard exemplars of each model type—an 

exhaustive description of all models is beyond the scope of this chapter (for reviews, see 

Bullinaria & Levy, 2007; Riordan & Jones, 2011; Turney & Pantel, 2010).  

4.1 Latent Semantic Analysis 
	
  

Perhaps the best-known distributional model is Latent Semantic Analysis (LSA; 

Landauer & Dumais, 1997). LSA begins with a term-by-document frequency matrix of a text 

corpus, in which each row vector is a word’s frequency distribution over documents. A 

document is simply a ‘bag-of-words’ in which transitional information is not represented. Next, a 

word’s row vector is transformed by its log frequency in the document and its information 

entropy over documents (− 𝑝 𝑥 log! 𝑝(𝑥); cf. Salton & McGill, 1983). Finally, the matrix is 

factorized using singular-value decomposition (SVD) into three component matrices, U, Σ, and 

V. The U matrix represents the orthonormal basis for a space in which each word is a point, V 

represents an analogous orthonormal document space, and Σ is a diagonal matrix of singular 

values (cf. an eigenvector) weighing dimensions in the space (see Landauer, McNamara, Dennis, 
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& Kintsch, 2007 for a tutorial). The original transformed term-by-document matrix, M, may be 

reconstructed as:  

𝑀 = 𝑈Σ𝑉! , (1) 

where 𝑉! is the transpose of V.  

More commonly, only the top N singular values of Σ are retained, where N is usually 

around 300. This dimension reduction allows an approximation of the original ‘episodic’ matrix 

to be reconstructed, and has the effect of bringing out higher-order statistical relationships among 

words more sophisticated than mere direct co-occurrence. A word’s semantic representation is 

then a pattern across the N latent semantic dimensions, and is often projected as a point in N-

dimensional semantic space (cf. Osgood, 1952). Even though two words (e.g., boat and ship) 

might have had zero similarity in the original M matrix, indicating that they do not co-occur in 

the same documents, they may nonetheless be proximal in the reduced space reflecting their 

deeper semantic similarity (contextual similarity but not necessarily contextual overlap).  

The application of SVD in LSA is quite similar to common uses of principal component 

analysis (a type of SVD) in questionnaire research. Given a pattern of observable scale responses 

to items on a personality questionnaire, for example, the theorist may apply SVD to infer a small 

number of latent components (e.g., extroversion, neuroticism) that are causing the larger number 

of observable response patterns. Similarly, LSA uses SVD to infer a small number of latent 

semantic components in language that explain the pattern of observable word co-occurrences 

across contexts. In this sense, LSA was the first model to successfully specify a function 

mapping semantic memory to episodic context. Landauer and Dumais (1997) were careful not to 

claim that humans use exactly SVD as a learning mechanism, but rather that the brain uses some 

dimensional reduction mechanism akin to SVD to create abstract semantic representations from 

experience.  
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The semantic representations constructed by LSA have demonstrated remarkable success 

at simulating a wide range of human behavioral data, including judgments of semantic similarity 

(Landauer & Dumais, 1997), word categorization (Laham, 2000), and discourse comprehension 

(Kintsch, 1998), and the model has also been applied to the automated scoring of essay quality 

(Landauer, Lahma, Rehder, & Schreiner, 1997). One of the most publicized feats of LSA was its 

ability to achieve a score on the Test of English as a Foreign Language (TOEFL) that would 

allow it entrance into most U.S. colleges (Landauer & Dumais). A critically important insight 

from the TOEFL simulation was that the model’s performance peaked at the reduced 300 

dimensions compared to fewer or even the full dimensionality of the Σ matrix. Even though the 

ability of the model (from an algebraic perspective) to reconstruct the original M matrix 

diminishes monotonically as dimensionality is reduced, its ability to simulate the human 

semantic data was better at the reduced dimensionalities. This finding supports the notion that 

semantic memory may simply be supported by a mental dimension reduction mechanism applied 

to episodic contexts. The dimension reduction operation brings out higher-order abstractions by 

glossing over variance that is idiosyncratic to specific contexts. The astute reader will note the 

similarity of this notion to the emergent behavior of the hidden layers of a connectionist network 

that also performs some dimensional reduction operation; we will return to this similarity in the 

discussion.  

The influence of LSA on the field of semantic modeling cannot be overstated. Several 

criticisms of the model have emerged over the years (see Perfetti, 1998), including the lack of 

incremental learning, neglect of word-order information, issues about what exact cognitive 

mechanisms would perform SVD, and concerns over its core assumption that meaning can be 

represented as a point in space. However, LSA clearly paved the way for a rapid sequence of 

advances in semantic models in the years since its publication.  
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4.2 Moving Window Models 
	
  

An alternative approach to learning distributional semantics is to slide an N-word window 

across a text corpus, and to apply some lexical association function to the co-occurrence counts 

within the window at each step. While LSA represents a word’s episodic context as a document, 

moving-window models operationalize a word’s context in terms of the other words that it is 

commonly seen with in temporal contexts. Compared to LSA’s batch learning mechanism, this 

allows moving-window models to gradually develop semantic structure from simple co-

occurrence counting (cf. Hebbian learning) as a text corpus is experienced in a continuous 

fashion. In addition, several of these models inversely weight co-occurrence by how many words 

intervene between a target word and its associate, allowing them to capitalize on word-order 

information.  

The prototypical exemplar of a moving-window model is the Hyperspace Analogue to 

Language model (HAL; Lund & Burgess, 1996). In HAL, a co-occurrence window (typically, 

the 10 words preceding and succeeding the target word) is slid across a text corpus, and a global 

word-by-word co-occurrence matrix is updated at each one-word increment of the window. HAL 

uses a ramped window in which co-occurrence magnitudes are weighted inversely proportional 

to distance from the target word. A word’s semantic representation in the model is simply a 

concatenation of its row and column vectors from the global co-occurrence matrix. The row and 

column vectors reflect the weighted frequency with which each word preceded and succeeded, 

respectively, the target word in the corpus. Obviously, the word vectors in HAL are both high 

dimensional and very sparse. Hence, it is common to only use the column vectors with the 

highest variance (typically about 10% of all words are then retained as ‘context’ words; Lund & 

Burgess). Considering its simplicity, HAL has been very successful at accounting for human 

behavior in semantic tasks, including semantic priming (Lund & Burgess, 1996), and asymmetric 
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semantic similarity as well as higher-order tasks such as problem solving (Burgess & Lund, 

2000).  

In HAL, words are most similar if they have appeared in similar positions relative to 

other words (paradigmatic similarity; e.g., bee-wasp). In fact, Burgess and Lund (2000) have 

suggested that the structure learned by HAL is very similar to what an SRN (Elman, 1990) 

would learn if it could scale up to such a large linguistic dataset. In contrast, it is known that 

LSA gives stronger weight to syntagmatic relations (e.g., bee-honey) than does HAL, since LSA 

ignores word order, and both types of similarity are important factors in human semantic 

representation (Jones, Kintsch, & Mewhort, 2006).   

Several recent modifications to HAL have produced models with state-of-the-art 

performance at simulating human data. One concern in the original model was that chance 

frequencies can produce spurious similarities in the global matrix: A higher frequency word has 

a greater chance of randomly occurring with any other word and, hence, high-frequency words 

end up being more semantically similar to a target independent of semantic similarity. Recent 

versions of HAL, such as Hidex (Shaoul & Westbury, 2006) factor out chance occurrence by 

weighting co-occurrence by inverse frequency of the target word, which is similar to LSA’s 

application of log-entropy weighting, but after learning the matrix. A second modification to 

HAL was proposed by Rohde, Gonnerman, and Plaut (2005) in their COALS model (Correlated 

Occurrence Analogue to Lexical Semantics). In COALS, there is no preceding/succeeding 

distinction within the moving window, and the model uses a co-occurrence association function 

based on Pearson’s correlation to factor out the confounding of chance co-occurrence due to 

frequency. Hence, the similarity between two words is their normalized covariational pattern 

over all context words. In addition, COALS performs SVD on this matrix. Although these are 
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quite straightforward modifications to HAL, COALS heavily outperforms its predecessor on 

human tasks such as semantic categorization (Riordan & Jones, 2011).  

A similar moving window model was used by McDonald and Lowe (1998) to simulate 

semantic priming. In their model, there is no predecessor/successor distinction, but all words are 

simply represented by their co-occurrence in the moving window with a small number of 

predefined “context words.” While many applications of HAL tabulate the entire matrix and then 

discard the 90% of column vectors with the least amount of variance, McDonald and Lowe’s 

context word approach specifies the context words (columns) a priori, and tabulates row vectors 

for each target word but only in relation to the predefined context words. This context word 

approach, where as few as 100 context words are used as the columns, has also been successfully 

used by Mitchell et al. (2008) to predict fMRI brain activity associated with humans making 

semantic judgments about nouns. Slightly more modern versions of these context-word models 

use log likelihood or log odds rather than raw co-occurrence frequency as matrix elements (Lowe 

& McDonald, 2000), and some even apply SVD to the word-by-word matrix (e.g., Budi, Royer, 

& Pirolli, 2007) to bring out latent word relationships.    

Moving window models such as HAL have surprised the field with the array of “deep” 

semantic tasks they can explain with relatively simple learning algorithms based on counting 

repetitions. They also tie large-scale models of statistical semantics with other learning models 

such as compound cuing (McKoon & Ratcliff, 1992) and cross-situational word learning (Smith 

& Yu, 2008).  

4.3 Random Vector Models 
	
  

A entirely different take on contextual representation is seen in models that use random 

representations for words that gradually develop semantic structure through repeated episodes of 

the word in a text corpus. The mechanisms used by these models are theoretically tied to 
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mathematical models of associative memory. For this reason, random vector models tend to 

capitalize on both contextual co-occurrence as LSA does, and also associative position relative to 

other words as models like HAL and COALS do, representing both in a composite vector space.  

In the Bound Encoding of the Aggregate Language Environment model (BEAGLE; Jones 

& Mewhort, 2007), semantic representations are gradually acquired as text is experienced in 

sentence chunks. The model is based heavily on mechanisms from Murdock’s (1982) theory of 

item and associative memory. The first time a word is encountered, it is assigned a random initial 

vector known as its environmental vector, ei. This vector is the same each time the word is 

experienced in the text corpus, and is assumed to represent the relatively stable physical 

characteristics of perceiving the word (e.g., its visual form or sound). The random vector 

assumption is obviously an oversimplification, assuming that all words are equally similar to one 

another in their environmental form (e.g., dog is as similar to dug as it is to carburetor), but see 

Cox, Kachergis, Recchia, and Jones (2010) for a version of the model that builds in preexisting 

orthographic structure.  

In BEAGLE, each time a word is experienced in the corpus, its memory vector, mi, is 

updated as the sum of the random environmental vectors for the other words that occurred in 

context with it, ignoring high-frequency function words. Hence, in the short phrase “A dog bit 

the mailman,” the memory representation for dog is updated as 𝑚!"# = 𝑒!"# + 𝑒!"#$!"%. In the 

same sentence, 𝑚!"# = 𝑒!"# + 𝑒!"#$!"% and 𝑚!"#$!"% = 𝑒!"# + 𝑒!"# are encoded. Even though 

the environmental vectors are random, the memory vectors for each word in the phrase have 

some of the same random environmental structure summed into their memory representations. 

Hence, 𝑚!"#, 𝑚!"#, and 𝑚!"#$!"% all move closer to one another in memory space each time 

they directly co-occur in contexts. In addition, latent similarity naturally emerges in the memory 

matrix—even if dog and pitbull never directly co-occur with each other, they will become 
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similar in memory space if they tend to occur with the same words (i.e., similar contexts). This 

allows higher-order abstraction, achieved in LSA by SVD, to emerge in BEAGLE naturally from 

simple Hebbian summation. Rather than reducing dimensionality after constructing a matrix, 

BEAGLE sets dimensionality a priori, and the semantic information is distributed across 

dimensions evenly. If fewer or more dimensions are selected (provided a critical mass is used), 

the information is simply distributed over fewer or more dimensions. Multiple runs of a model 

on the same corpus may produce very different vectors (unlike LSA or HAL), but the overall 

similarity structure of the memory matrix on multiple runs will be remarkably similar. In this 

sense, BEAGLE has considerable similarity to unsupervised connectionist models. 

The use of random environmental representations allows BEAGLE to learn information 

as would LSA, but in a continuous fashion and without the need for SVD. But the most 

interesting aspect of the model is that the random representations allow the model to encode 

word order information in parallel by applying an operation from signal processing known as 

convolution to bind together vectors for words in sequence. Convolution-based memory models 

have been very successful as models of both vision and paired-associate memory, and BEAGLE 

extends this mechanism to encode n-gram chunk information in the word’s representation. The 

model uses circular convolution, which binds together two vectors, with dimensionality n, into a 

third vector of the same dimensionality:  

for  𝑖   =   0  to  𝑛 − 1:              𝑧! = 𝑥!!"#!

!!!

!!!

∗ 𝑦(!!!)!"#! 
 
(2) 

 
BEAGLE applies this operation recursively to create an order vector representing all the 

environmental vectors that occur in sequences around the target word, and this order vector is 

also summed into the word’s memory vector. Hence, the memory vector becomes a pattern of 

elements that reflects the word’s history of co-occurrence with, and position relative to, other 
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words in sentences. Words that appear in similar contexts and similar syntactic roles within 

sentences will become progressively more similar. Jones, et al. (2006) have demonstrated how 

this integration of context and order information in a single vector representation allows the 

model to better account for patterns in semantic priming data.  

An additional benefit of having order information encoded in a word’s memory vector is 

that the convolution mechanism used to encode sequence information may be inverted to decode 

sequential expectancies for a word from its learned history. This decoding operates in a similar 

fashion to how Murdock (1982) retrieves an associated target given a cue in paired-associate 

learning. The model can make inferences about likely transitions preceding or following a word 

and can build up expectancies for which words should be upcoming in sentence processing tasks 

using the same associative mechanism it uses for learning (see Jones & Mewhort, 2007). 

Although it only learns lexical semantic structure, BEAGLE naturally displays complex rule-like 

syntactic behavior as an emergent property of its lexicon. Further, it draws a theoretical bridge 

between models of lexical semantics and associative memory suggesting that they may be based 

on the same cognitive mechanisms.  

A similar approach to BEAGLE, known as random indexing, has been taken by Kanerva 

and colleagues (Kanerva, 2009; Kanerva, Kristoferson, & Holst, 2000). Random indexing uses 

similar principles to BEAGLE’s summation of random environmental vectors, but is based on 

Kanerva’s (1988) theory of sparse distributed memory.  The initial vector for a word in random 

indexing is a sparse binary representation: A very high dimensional vector in which most 

elements are zeros with a small number of random elements switched to ones (a.k.a., a “spatter 

code”). A word’s memory representation is then a sum of initial vectors for the other words that 

it has appeared in contexts with. Words that are semantically similar will tend to be additive on 
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the random elements that they share nonzero values on, which leads to a similarity structure 

remarkably similar to LSA, but without the need for SVD.  

Sahlgren, Holst, & Kanerva (2008) have extended random indexing to encode order 

information as does BEAGLE in their Random Permutation Model (RPM). RPM encodes 

contextual information the same way as standard random indexing. Rather than convolution, it 

uses a permutation function to encode the order of words around a target word. The permutation 

function may be applied recursively to encode multiple words at multiple positions around the 

target word, and this order vector is also added to the word’s memory representation. Like 

BEAGLE, a word’s memory vector is a distributed pattern that contains information about its co-

occurrence with and position relative to other words. However, in RPM this representation is a 

sparse hyperdimensional vector, which contains less noise than does BEAGLE’s dense Gaussian 

vectors. In comparative simulations, RPM has been shown to outperform BEAGLE on simple 

associative tasks (Recchia, Jones, Sahlgren, & Kanerva, 2010). 

Howard and colleagues (e.g., Howard, Shakar, & Jagadisan, 2011)  have taken a different 

approach to learning semantic representations, binding local item representations to a gradually 

changing representation of context by modifying the Temporal Context Model (TCM; Howard & 

Kahana, 2002) to learn semantic information from a text corpus. TCM uses static vectors 

representing word form, similar to RPM’s initial vectors or BEAGLE’s environmental vectors. 

However, the model binds words to temporal context, a representation that changes gradually 

with time, similar to oscillator-based systems. In this sense, the model is heavily inspired by 

hippocampal function. Encountering a word reinstates its previous temporal contexts when 

encoding its current state in the corpus. Hence, while LSA, HAL, and BEAGLE all treat context 

as a categorical measure (documents, windows, and sentences, respectively, are completely 

different contexts), TCM treats context as a continuous measure that is gradually changing over 
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time. In addition, while all the aforementioned models are essentially batch learners or ignore 

previous semantic learning when encoding a word, a word’s learned history in TCM contributes 

to its future representation. This is a unique and important feature of TCM compared to other 

models.   

Howard et al. (2011) trained a predictive version of TCM (pTCM) on a text corpus to 

compare to established semantic models. pTCM continuously attempts to predict upcoming 

words based on reinstated temporal context. In this sense, the model has many features in 

common with both BEAGLE and SRNs (Elman, 1990), allowing it to represent both context and 

order information within the same composite representation. Howard et al. demonstrate 

impressive performance from pTCM on linguistic association tasks. In addition, the application 

of TCM in general to semantic representation makes a formal link to mechanisms of episodic 

memory (which at its core, TCM is) as well as findings in cognitive neuroscience (see Polyn & 

Kahana, 2008).  

4.4 Probabilistic Topic Models 
	
  

Considerable attention in the cognitive modeling literature has recently been placed on 

Bayesian models of cognition (see Austerweil, et al., this volume), and mechanisms of Bayesian 

inference have been successfully extended to semantic memory as well. Probabilistic topic 

models (Blei, Ng, & Jordan, 2003; Griffiths, Steyvers, & Tenenbaum, 2007) operate in a similar 

fashion to LSA, performing statistical inference to reduce the dimensionality of a term-by-

document matrix. However, the theoretical mechanisms behind the inference and representation 

in topic models differ markedly from LSA and other spatial models.  

An assumption of a topic model is that documents are generated by mixtures of latent 

“topics,” where a topic is a probability distribution over words. While LSA makes a similar 

assumption that latent semantic components can be inferred from observable co-occurrences 
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across documents, topic models go a step further, specifying a fully generative model for 

documents (a procedure by which documents may be generated). The assumption is that when 

constructing documents, humans are sampling a distribution over universal latent topics. For 

example, one might construct a document about a recent beetle infestation by mixing topics 

about insects, forests, the ecosystem, etc., with varying weights. To generate each word within 

this document, one samples a topic according to the document’s mixture weights, and then 

samples words from that topic’s probability distribution over words.  

To train the model, Bayesian inference is used to reverse the generative process: 

Assuming that topic mixing is what generates documents, the task of the model is to invert the 

process and statistically infer the set of topics that were responsible for generating a given set of 

documents. The formal instantiation of a topic model can be technically intimidating to the 

novice modeler—based on Latent Dirichlet Allocation algorithms, Markov Chain Monte Carlo 

algorithms etc. (see Griffiths et al., 2007; Griffiths, Steyvers, Blei, & Tenenbaum, 2005). But it 

is important to note that the theoretical ideas underlying the model are actually quite simple and 

elegant and are based on the same ideas posited for how children infer unseen causes for 

observable events (Tenenbaum, Kemp, Griffiths, & Goodman, 2011). 

Consider the analogy of a dermatologist: Given that disease X is present, symptoms A, B, 

and C are expected to manifest. The task of a dermatologist is one of causal inference however—

given a set of co-occurring symptoms she must infer the unseen disease or diseases that produced 

to the observed data. Over many instances of the same co-occurring symptoms, she can infer the 

likelihood that they are the result of a common cause. The topic model works in an analogous 

way, but on a much larger scale of inference and with mixtures of causal variables. Given that 

certain words tend to co-occur in contexts and this pattern is consistent over many contexts, the 

model infers the likely latent “topics” that are responsible for generating the co-occurrence 
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patterns, where each document is a probabilistic mixture of these topics. Each topic is a 

probability distribution over words, and a word’s meaning can be captured by the probability that 

it was generated by each topic (just as each disease would be a probability distribution over 

symptoms, and a symptom is a probability distribution over possible diseases that generated it).  

Figure 3, reproduced from Steyvers and Griffiths (2007), illustrates this process. 

Assuming that document co-occurrences are being generated by the process on the left, the topic 

model attempts to statistically infer (on the right) the most likely topics and mixtures that would 

have generated the observed data. It is important to note that like LSA, topic models tend to 

assume a simple bag-of-words representation of a document, neglecting word-order information 

(but see Andrews & Vigliocco, 2010; Griffiths, et al., 2005). Similar to LSA, each document in 

the original co-occurrence matrix may be reconstructed by determining the document’s 

distribution over N topics (reflecting its gist, g), using this distribution to select a topic for each 

word wi , and then generating a word from the distribution of words conditioned on the topic:  

𝑃 𝑤! 𝑔 = 𝑃(𝑤!|
!

!!!!

𝑧!)𝑃 𝑧! 𝑔 , 
 
(3) 

 
where w is the distribution of words over topics, and z is the distribution of topics over words. In 

practice, topic models construct a prior on the degree of mixing of topics in a document, and then 

estimate the probability distributions of topics over words and documents over topics using 

Gibbs sampling (Griffiths & Steyvers, 2004).  

The probabilistic inference machinery behind topic models results in at least three major 

differences in topic models when compared to other distributional models. Firstly, as mentioned 

above, topic models are generative. Secondly, it is often suggested that the topics themselves 

have a meaningful interpretation, such as finance, medicine, theft, etc., whereas the components 

of LSA are difficult to interpret, and the components of models like BEAGLE are purposely not 
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interpretable in isolation from the others. It is important to note, however, that since the number 

of topics (and the value of the priors) is set a priori by the theorist, there is often a considerable 

amount of hand-fitting and intuition that can go into constructing topics that are meaningful 

(similar to ‘labeling’ factors in a factor analysis). Thirdly, words in a topic model are represented 

as probability distributions rather than as points in semantic space—this is a key distinction 

between topic models and the above spatial models. It allows topic models to naturally display 

asymmetric associations, which are commonly seen in free association data but require 

additional assumptions to explain with spatial models (Griffiths, et al., 2007; but see Jones, 

Gruenenfelder, & Recchia, 2011). Representing a word’s meaning with a probability distribution 

also naturally allows for polysemy in the representation compared to vector representation 

models that collapse multiple meanings to a single point. For these reasons, topic models have 

been shown to produce better fits to free association data than LSA, and they are able to account 

for disambiguation, word-prediction, and discourse effects that are problematic for LSA 

(Griffiths et al., 2007). 

4.5 Retrieval-Based Semantics 
 

Kwantes (2005) proposed an alternative approach to modeling semantic memory from 

distributional structure. Although not named in his publication, Kwantes’ model is commonly 

referred to as the constructed semantics model (CSM), a name that is paradoxical given that the 

model posits that there is no such thing as semantic memory. Rather, semantic behavior 

exhibited by the model is an emergent artifact of retrieval from episodic memory. While all other 

models put the semantic abstraction mechanism at encoding (e.g., SVD, Bayesian inference, 

vector summation), CSM actually encodes the episodic matrix and performs abstraction as 

needed when a word is encountered.  
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CSM is based heavily on Hintzman’s (1986) Minerva 2 model which was used as an 

existence proof that a variety of behavioral effects that had been used to argue for two distinct 

memory stores (episodic and semantic) could naturally be produced by a model that only had 

memory for episodes. So-called “prototype effects” were simply an artifact of averaging at 

retrieval in the model, not necessarily evidence of a semantic store. CSM extends Minerva 2 

almost exactly to a text corpus. In CSM, the memory matrix is the term-by-document matrix 

(i.e., it assumes perfect memory of episodes). When a word is encountered in the environment, 

its semantic representation is constructed as an average of the episodic memories of all other 

words in memory, weighted by their contextual similarity to the target. The result is a vector that 

has higher-order semantic similarities accumulated from the lexicon. This semantic vector is 

similar in structure to the memory vector learned in BEAGLE by context averaging, but the 

averaging is done on the fly, it is not encoded or stored.    

Although retrieval-based models have received less attention in the literature than models 

like LSA, they represent a very important link to other instance-based models, especially 

exemplar models of recognition memory and categorization (e.g., Nosofsky, 1986). The primary 

reason limiting their uptake in model applications is likely due to the heavy computational 

expense required to actually simulate their process (Stone, Dennis, & Kwantes, 2011).  

5. GROUNDING SEMANTIC MODELS 

Semantic models, particularly distributional models, have been criticized as 

psychologically implausible because they learn from only linguistic information and do not 

contain information about sensorimotor perception contrary to the grounded cognition movement 

(for a review, see de Vega, Glenberg, & Graesser, 2008). Hence, representations in distributional 

models are not a replacement for feature norms. Feature-based representations contain a great 

deal of sensorimotor properties of words that cannot be learned from purely linguistic input, and 
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both types of information are core to human semantic representation (Louwerse, 2008). Riordan 

and Jones (2011) recently compared a variety of feature-based and distributional models on 

semantic clustering tasks. Their results demonstrated that whereas there is information about 

word meaning redundantly coded in both feature norms and linguistic data, each has its own 

unique variance and the two information sources serve as complimentary cues to meaning. 

Research using recurrent networks trained on child-directed speech corpora has found 

that pretraining a network with features related to children’s sensorimotor experience produced 

significantly better word learning when subsequently trained on linguistic data (Howell, 

Jankowicz, & Becker, 2005). Durda, Buchanan, and Caron (2009) trained a feedforward network 

to associate LSA-type semantic vectors with their corresponding activation of features from 

McRae et al.’s (2005) norms. Given the semantic representation for dog, the model attempts to 

activate correct output features such as <has fur> and inhibit incorrect output features such as 

<made of metal>. After training, the network was able to infer the correct pattern of perceptual 

features for words that were not used in training because of their linguistic similarity to words 

that were learned. 

Several recent probabilistic topic models have also explored parallel learning of linguistic 

and featural information (Andrews, Vigliocco, & Vinson, 2009; Baroni, Murphy, Barba, & 

Poesio, 2010; Steyvers, 2009). Given a word-by-document representation of a text corpus and a 

word-by-feature representation of feature production norms, the models learn a word’s meaning 

by simultaneously considering inference across documents and features. This enables learning 

from joint distributional information: If the model learns from the feature norms that sparrows 

have beaks, and from linguistic experience that sparrows and mockingbirds are distributionally 

similar, it will infer that mockingbirds also have beaks, despite having no feature vector for 

mockingbird. Integration of linguistic and sensorimotor information allows the models to better 
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fit human semantic data than a model trained with only one source (Andrews et al., 2009). This 

information integration is not unique to Bayesian models, but can also be accomplished within 

random vector models (Jones & Recchia, 2010; Vigliocco, Vinson, Lewis, & Garrett, 2004) and 

retrieval-based models (Johns & Jones, 2012). 

6. COMPOSITIONAL SEMANTICS 

The models we have considered thus far are designed to extract the meaning of individual 

terms.  However, the sentence “John loves Mary” is not just the sum of the words it contains. 

Rather “John” is bound to the role LOVER and “Mary” is bound to the role LOVEE. The study 

of how sentence structure determines these bindings is called compositional semantics. Recent 

work has begun to explore mechanisms for compositional semantics by applying learning 

mechanisms to the already learned lexicon of a distributional model (Mitchell & Lapata, 2010).   

Dennis (2004, 2005) argued that extracting propositional structure from sentences 

revolves around the distinction between syntagmatic and paradigmatic associations. Syntagmatic 

associations occur between words that appear together in utterances (e.g. run fast). Paradigmatic 

associations occur between words that appear in similar contexts, but not necessarily in the same 

utterances (e.g. deep and shallow). The syntamatic paradigmatic model proposes that 

syntagmatic associations are used to determine which words could have filled a particular slot 

within a sentence. The set of these words form role vectors which are then bound to fillers by 

paradigmatic associations to form a propositional representation of the sentence. The 

syntagmatic paradigmatic mechanism has been shown to be capable of accounting for a wide 

range of sentence processing phenomena. Furthermore, it is capable of taking advantage of 

regularities in the overlap of role patterns to create implicit inferences that Dennis (2005) 

claimed are responsible for the robustness of human commonsense reasoning.  

7. COMMON LESSONS AND FUTURE DIRECTIONS 
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Models of semantic memory have seen impressive developments over the past two 

decades that have greatly advanced our understanding of how humans create, represent, and use 

meaning from experience. These developments are thanks in part to advances in other areas, such 

as machine learning, and to better large-scale norms of semantic data on which to fit and 

compare the models. In general, distributional models have been successfully used to better 

explore the statistical structure of the environment and to understand the mechanisms that may 

be used to construct semantic representations. Connectionist models are an excellent 

compliment, elucidating our understanding of semantic processing, and how semantic structure 

interacts with other cognitive systems and tasks. An obvious and important requirement for the 

future is to start to bring these insights together, and several hybrid models are now emerging in 

the literature.  

Several important themes have emerged that are common to both the connectionist and 

distributional literatures. The first is the clear is the importance of data reduction. Whatever 

specific mechanism humans are using to construct conceptual and propositional knowledge from 

experience, it is likely that this mechanism learns by focusing on important statistical factors that 

are constant across contexts, and by throwing away factors that are idiosyncratic to specific 

contexts. In a sense, capacity constraints on human encoding, storage, and retrieval may give rise 

to our incredible ability to construct and use meaning.   

A second common theme is the importance of data scale in semantic modeling. In both 

connectionist and distributional models, the issue of data scale vs. mechanistic complexity has 

been brought to the forefront of discussion in the literature. A consistent emerging theme is that 

simpler models tend to give the best explanation of human data, both in terms of parsimony and 

quantitative fit to the data, when they are trained on linguistic data that is on a realistic scale to 

what humans experience. For example, although simple context-word moving window models 
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are considerably simpler than LSA and do not perform well at small data scales, they are capable 

of scaling up to learn from human-scale amounts of linguistic data (a scale not necessarily 

possible to learn with LSA), and consistently outperform more complex models such as LSA 

with large data (e.g., Louwerse, 2011; Recchia & Jones, 2009). This leads to potential concern 

that earlier theoretical advancements with models trained on so-called ‘toy datasets’ (artificial 

language corpora constructed to test the model’s structural learning) may have been overly 

complex. To fit human behavioral data with a corpus that is far smaller and without the deep 

complexities inherent in real language, the model must necessarily be building complexity into 

the architecture and mechanism whereas humans may be using a considerably simpler 

mechanism, offloading considerable statistical complexity already present in their linguistic 

environment.   

A third common theme is that complex semantic structures and behaviors may be an 

emergent property of the lexicon. Emergence is a key property of connectionist models, and we 

have seen that complex representations of schemata, hierarchical categories, and syntactic 

processing may be emergent consequences of many connectionist models (e.g., Rogers & 

McClelland, 2007). But emergence is also a natural consequence of distributional models. In 

several cases, the same mechanisms used to learn semantic representations may be applied to the 

learned representations to simulate complex behaviors, such as BEAGLE’s ability to model 

sentence comprehension as an emergent property of order information distributed across the 

lexicon (Jones & Mewhort, 2007). Topic models also possess a natural mechanism for producing 

asymmetric similarity and polysemous processing through conditional inference.  

Learning to organize the mental lexicon is one of the most important cognitive functions 

across development, laying the fundamental structure for future semantic learning and 

communicative behavior. Semantic modeling has a very promising future, with potential to 
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further our understanding of basic cognitive mechanisms that give rise to complex meaning 

structures, and how these mental representations are used in a wide range of higher-order 

cognitive tasks.   
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GLOSSARY 
 
Compositional Semantics: The process by which a complex expression (e.g., a phrase or 
sentence) is constructed from the meanings of its constituent concepts.  
 
Concept: A mental representation generalized from particular instances, and knowledge of its 
similarity to other concepts.  
 
Connectionist Model: A model that represents knowledge as weighted network of 
interconnected units. Behavioral phenomena are an emergent process of the full network.  
 
Context: In semantic models, context is typically considered the ‘window’ within which two 
words may be considered to co-occur, and it is one of the major theoretical differences between 
distributional models. Context may be considered to be discrete units, such as sentences or 
documents, or it may be more continuous, such as in moving-window or temporal context 
models.  
 
Distributional Model: A general approach to concept learning and representation from 
statistical redundancies in the environment.   
 
Dynamic Network: A connectionist network whose architecture involves bi-directionality, 
feedback, or recurrent connectivity.  
 
Feature Comparison Model: A classic model of semantic memory that represents concepts as 
vectors of binary features representing the presence or absence of features. For example, the 
has_wings element would be turned on for robin, but off for golden retriever.  
 
Paradigmatic and Syntagmatic Relations: Paradigmatic similarity between two words 
emphasizes their synonymy or substitutability (bee-wasp), whereas syntagmatic similarity 
emphasizes associative or event relations (e.g., bee-honey, wasp-sting).   
 
Proposition: A mental representation of conceptual relations that may be evaluated to have a 
truth-value. For example, knowledge that birds have wings.  
 
Random Vector Model: A semantic model that begins with some sort of randomly generated 
vector to initially represent a concept. Over linguistic experience, an aggregating function 
gradually produces similar vector patterns among words that are semantically related. They 
allow for study of the time course of semantic acquisition.  
 
Semantic Memory: Memory for word meanings, facts, concepts, and general world knowledge. 
Typically not tied to a specific event.  
 
Semantic Network: A classic graphical model of semantic memory that represents concepts as 
nodes and semantic relations as labeled edges between the nodes. Often, the hypothetical process 
of spreading activation is used to simulate behavioral data such as semantic priming from a 
semantic network.  
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Singular-Value Decomposition: A statistical method of factorizing an m x n matrix, M, into an 
m x m unitary matrix, U, an m x n diagonal matrix, Σ, with diagonal entries that are the singular 
values, and an n x n unitary matrix, V. The original matrix may be recomposed as 𝐌 =
𝐔𝚺𝐕𝐓,  where 𝐕𝐓 is the transpose of V.  
 
Spatial Model: A model that represents word meaning as a point in a multidimensional space, 
and that typically applies a geometric function to express conceptual similarity. 
 
Supervised and Unsupervised Learning: Supervised learning typically trains the model on a 
set of labeled exemplars (i.e., the true output of each training exemplar is known), whereas in 
unsupervised learning the model must discover structure in the data without the benefit of known 
labels. 
 
Topic Model: A generative probabilistic model that uses Bayesian inference to abstract the 
mental “topics” used to compose a set of documents.  
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Figure 1A (Left). The network architecture used by Rogers and McClelland (2006), showing the output activation of appropriate 
semantic features given an input concept and an input relation. Figure 1B (Right). A graph of the network’s learning trajectory, 
obtained by performing a multidimensional scaling on the network’s hidden unit activations for each input. As the network obtains 
more experience with each concept, it progressively learns to make finer and finer distinctions between categories. 

The consequence is that properties shared by items with
similar representations will be learned faster than the
properties that differentiate such items.

The preceding paragraph considers how the structure of
internal representations affects learning in the weights
projecting forward from the Representation layer. What
about the weights projecting from the Item input to the
Representation layer, which after all determine the simi-
larity structure of the internal representations in the first
place? We have seen that items with similar outputs will
have their representations pushed in the same direction,
whereas items with dissimilar outputs will have their rep-
resentations pushed in different directions. The question
remaining is why the dissimilarity between, say, the fish
and the birds does not push the representations apart
very much from the very beginning. The key to this ques-
tion lies in understanding that the magnitude of the
changes made to the representation weights depends on
the extent to which such changes will reduce error at the
output. This in turn depends on the configuration of the
weights projecting forward from the Representation
layer. If, given a particular configuration of forward
weights, changes to the activation of Representation
units will not strongly influence the total error at the
output level, then the weights projecting into the Rep-
resentation layer will not change. In other words, we can
point out a further very important aspect of the way the
model learns:

Error back-propagates much more strongly through weights
that are already structured to perform useful forward-
mappings.

We can illustrate this by observing the error signal pro-
pagated back to the representation units for the canary
item, from three different kinds of output units: those

that reliably discriminate plants from animals (such as
can move and has roots), those that reliably discriminate
birds from fish (such as can fly and has gills), and those
that differentiate the canary from the robin (such as is
red and can sing). In Figure 5, we show the mean error
reaching the Representation layer throughout training,
across each of these types of output unit when the
model is given the canary (middle plot) as input. We
graph this alongside measures of the distance between
the two bird representations, between the birds and the
fish, and between the animals and the plants (bottom
plot); and also alongside of measures of activation of the
output units for can sing, is yellow, has wings, and can
move (top plot). We can see that there comes a point at
which the network is beginning to differentiate the plant
and the animal representations, and is beginning to acti-
vate move correctly for all of the animals. At this time
the average error information from output properties
like can move is producing a much stronger signal than
the average error information from properties like has
wings, can sing or is yellow. As a consequence, the infor-
mation that the canary can move is contributing much
more strongly to changing the representation weights
than is the information that the canary has wings and
can sing. Put differently, the knowledge that the canary
can move is more “important” for determining how it
should be represented than the information that it has
wings and can sing, at this stage of learning. Subsequently,
the properties that differentiate birds from fish (e.g., has
wings) begin to be learned, and to contribute to represen-
tational change, so that bird and fish representations
are propelled apart; and finally the properties that dis-
criminate subcategories (e.g., canary and robin) are
learned and begin to influence representations. Note
that these effects are not a simple consequence of the
overall frequency of the various properties: is yellow
(which is true of three items in the corpus) is actually
more frequent than has wings (which is true only of the
two birds); nevertheless the network learns to activate
has wings first, because this property coheres with other
properties that reliably discriminate birds from fish,
whereas is yellow does not.

The overall situation can be summarized as follows.
Initially the network assigns virtually the same represen-
tation to all of the items. With just this one representation,
the network cannot predict different outputs for different
concepts. The only properties that are correctly activated
are those that are shared across everything – the is
living, can grow, and ISA living thing outputs. All other
output properties have their effects on the forward
weights almost completely canceled out. However,
because the plants have several properties that none of
the animals have, and vice versa, weak error signals from
each of these properties begin to accumulate, eventually
driving the representations of plants and animals apart.
At this point, the common animal representation can
begin to drive the activation of outputs shared by
animals, and vice versa for the plants. This structure in
the forward weights in turn allows the properties shared
by animals and not plants (and vice versa) to more strongly
influence the model’s internal representations, relative to
properties that differentiate, say, birds from fish. The
result is that the individual animal representations stay
similar to one another, and are rapidly propelled away

Figure 4. Trajectory of learned internal representations during
learning. The Euclidean distance matrix for all item represen-
tations was calculated at 10 different points throughout
training. A multidimensional scaling was performed on these
data to find corresponding points in a two-dimensional space
that preserve, as closely as possible, the pairwise distances
among representations across training. Thus, the proximity of
two points in the figure approximates the actual Euclidean
distance between the network’s internal representations of
the corresponding objects at a particular point in training.
The lines indicate the path traversed by a particular item
representation over the course of development.

Rogers & McClelland: Précis of Semantic Cognition

BEHAVIORAL AND BRAIN SCIENCES (2008) 31:6 697
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Figure 2a (Left). A prototypical example of a semantic attractor network, from McLeod, Shallice, & Plaut (2000). 
Figure 2B (Right). An example of the network’s behavior, simulating the experience of a person reading the word “dog”. The 
weights of the network have created a number of attractor spaces, determined by words’ orthographic, phonological, and semantic 
similarity. Disrupting the input (such as presenting the participant with a stimulus mask) at different stages has different effects. Early 
masking leads to a higher likelihood of falling into the wrong perceptual attractor (LOG instead of DOG). Later masking leads to a 
higher likelihood of falling into the wrong semantic attractor (CAT instead of DOG). 

 
 



Semantic	
  Memory	
   48	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Figure 3. Illustration of the generative process (left) and the problem of statistical inference 
(right) underlying topic models. (Reproduced from Steyvers & Griffiths, 2007).  
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Textbox 1: So which model is right?  
 
It is tempting to think of different distributional models as competing “brands.” However, a 
potentially more fruitful approach is to consider each specific model as a point in a parameter 
space, as one would with other cognitive models. Each model is really just a particular set of 
decisions made to formalize the distributional theory of “knowing a word by the company it 
keeps” (Firth, 1957), and no single model has emerged victorious at accounting for the wide 
range of semantic behavioral data. Each model has its merits and shortcomings.  
 
How should distributional models be compared? If a model is being proposed as a psychological 
model, it is important to identify the model’s sub-processes. How do those sub-processes 
contribute to how the model works? How are they related to other psychological theories? And 
how do they contribute to the model’s ability to predict behavioral data? For example, LSA and 
HAL vary in a large number of ways (see Table 1). Studies that perform simple model 
comparisons end up confounding these differences, leaving us unsure what underlying 
psychological claim is being tested. 
 
Most model differences can be ascribed to one of three categories, each corresponding to 
important differences in the underlying psychological theory: 

1. Representational Structure: What statistical information does the model pay attention to, 
and how is this information initially represented?  

2. Representational Transformations: By what function are the representations transformed 
to produce a semantic space?  

3. Comparison Process: How is the semantic space queried, and how is the semantic 
information, relations, or similarity used to model behavioral data? 

 
The HAL model defines its representations in terms of a word-by-word co-occurrence matrix, 
whereas the LSA model defines its representation in terms of a word-counts-within-documents 
matrix. This difference corresponds to a long tradition of different psychological theories. HAL’s 
word-word co-occurrences are akin to models that propose representations based on associations 
between specific stimuli (such as classical associationist theories of learning). In contrast, LSA’s 
word-by-document representation proposes representations based associations between a stimuli 
and abstract pointers to the event in which those stimuli participate (similar to classic context 
association theories of learning). 
 
A number of studies have begun comparing model performance as a function of differences in 
these subprocesses (e.g. Bullinaria & Levy, 2012; Shaoul & Westbury, 2010), but much more 
research is needed before any firm conclusions can be made.  
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Box 2: Semantic Memory Modeling Resources 
 
A chapter on semantic models would seem incomplete without some code! Testing models of 
semantic memory has become much easier due to an increase in semantic modeling resources. 
There are now a wide variety of software packages that provide the ability to construct and test 
semantic models. The software packages vary in terms of their easy of installation and use, 
flexibility, and performance. In addition to the software packages, a limited number of web-
based resources exist for doing simple comparisons online. You may test models on standardized 
datasets, train them on your own corpora for semantic exploration, or use them for generating 
stimuli.  
 
Software Packages 
• HiDEx (http://www.psych.ualberta.ca/~westburylab/downloads/HiDEx.download.html): A 

C++ implementation of the HAL model; it is useful for constructing large word-by-word co-
occurrence matrices and testing a wide variety of possible parameters. 

• SuperMatrix (http://semanticore.org/supermatrix/): A python implementation of a large 
number of semantic space model transformations (including PCA/SVD, Latent Dirichlet 
Allocation, and Random Vector Accumulation) on both word-by-word and word-by-
document spaces. SuperMatrix was designed to emphasize the exchangeability of various 
sub-processes within semantic models (see Box 1), to allow isolation and testing the effects 
of specific model components. 

• GenSim (http://radimrehurek.com/gensim/): A python module that is very fast and efficient 
for constructing and testing word-by-document models, including LSA (reduced using SVD) 
and Topics (reduced using Latent Dirichlet Allocation).  

• S-Space (https://github.com/fozziethebeat/S-Space): A Java-based implementation of a large 
number of semantic space models, including HAL, LSA, BEAGLE, and COALS. 

• SEMMOD (http://mall.psy.ohio-state.edu/wiki/index.php/Semantic_Models_Package_(SEMMOD)): A 
python package to implement and compare many of the most common semantic models.  

• Word-Similarity (https://code.google.com/p/wordsimilarity/wiki/train): A tool to explore 
and visualize semantic spaces, displayed as directed graphical networks. 

 
Web-Based Resources 
• http://lsa.colorado.edu: The original LSA website provides the ability to explore Latent 

Semantic Analysis with a wide variety of different metrics, including word-word similarities, 
similarities of passages of text to individual words, and similarities of passages of texts to 
each other.  

• http://semanticore.org: The Semanticore website is a web portal designed to bring data from 
many semantic models and psycholinguistic databases under one roof. Users can obtain 
frequency and co-occurrence statistics from a wide variety of corpora, as well as semantic 
similarities from a number of different semantic memory models, including HAL, LSA, 
BEAGLE, and Probabilistic Topics Models. 

 


